19 research outputs found

    A High Resolution Survey of the Galactic Plane at 408 MHz

    Get PDF
    The interstellar medium is a complex 'ecosystem' with gas constituents in the atomic, molecular, and ionized states, dust, magnetic fields, and relativistic particles. The Canadian Galactic Plane Survey has imaged these constituents with angular resolution of the order of arcminutes. This paper presents radio continuum data at 408 MHz over the area 52 degrees < longitude < 193 degrees, -6.5 degrees < latitude < 8.5 degrees, with an extension to latitude = 21 degrees in the range 97 degrees < longitude < 120 degrees, with angular resolution 2.8' x 2.8' cosec(declination). Observations were made with the Synthesis Telescope at the Dominion Radio Astrophysical Observatory as part of the Canadian Galactic Plane Survey. The calibration of the survey using existing radio source catalogs is described. The accuracy of 408-MHz flux densities from the data is 6%. Information on large structures has been incorporated into the data using the single-antenna survey of Haslam (1982). The paper presents the data, describes how it can be accessed electronically, and gives examples of applications of the data to ISM research.Comment: Accepted for publication in the Astronomical Journa

    A New Distance to the Supernova Remnant DA 530 Based on HI Absorption of Polarized Emission

    Full text link
    Supernova remnants (SNRs) are significant contributors of matter and energy to the interstellar medium. Understanding the impact and the mechanism of this contribution requires knowledge of the physical size, energy, and expansion rate of individual SNRs, which can only come if reliable distances can be obtained. We aim to determine the distance to the SNR DA 530 (G93.3+6.9), an object of low surface brightness. To achieve this, we used the Dominion Radio Astrophysical Observatory Synthesis Telescope and the National Radio Astronomy Observatory Very Large Array to observe the absorption by intervening HI of the polarized emission from DA 530. Significant absorption was detected at velocities −28-28 and -67 km/s (relative to the local standard of rest), corresponding to distances of 4.4 and 8.3 kpc, respectively. Based on the radio and X-ray characteristics of DA 530, we conclude that the minimum distance is 4.4−0.2+0.4^{+0.4}_{-0.2} kpc. At this minimum distance, the diameter of the SNR is 34−1+4^{+4}_{-1} pc, and the elevation above the Galactic plane is 537−32+40^{+40}_{-32} pc. The −67-67 km/s absorption likely occurs in gas whose velocity is not determined by Galactic rotation. We present a new data processing method for combining Stokes QQ and UU observations of the emission from an SNR into a single HI absorption spectrum, which avoids the difficulties of the noise-bias subtraction required for the calculation of polarized intensity. The polarized absorption technique can be applied to determine distances to many more SNRs

    Measuring magnetism in the Milky Way with the Square Kilometre Array

    Get PDF
    Magnetic fields in the Milky Way are present on a wide variety of sizes and strengths, influencing many processes in the Galactic ecosystem such as star formation, gas dynamics, jets, and evolution of supernova remnants or pulsar wind nebulae. Observation methods are complex and indirect; the most used of these are a grid of rotation measures of unresolved polarized extragalactic sources, and broadband polarimetry of diffuse emission. Current studies of magnetic fields in the Milky Way reveal a global spiral magnetic field with a significant turbulent component; the limited sample of magnetic field measurements in discrete objects such as supernova remnants and HII regions shows a wide variety in field configurations; a few detections of magnetic fields in Young Stellar Object jets have been published; and the magnetic field structure in the Galactic Center is still under debate. The SKA will unravel the 3D structure and configurations of magnetic fields in the Milky Way on sub-parsec to galaxy scales, including field structure in the Galactic Center. The global configuration of the Milky Way disk magnetic field, probed through pulsar RMs, will resolve controversy about reversals in the Galactic plane. Characteristics of interstellar turbulence can be determined from the grid of background RMs. We expect to learn to understand magnetic field structures in protostellar jets, supernova remnants, and other discrete sources, due to the vast increase in sample sizes possible with the SKA. This knowledge of magnetic fields in the Milky Way will not only be crucial in understanding of the evolution and interaction of Galactic structures, but will also help to define and remove Galactic foregrounds for a multitude of extragalactic and cosmological studies.Comment: 19 pages, 2 figures; to appear as part of 'Cosmic Magnetism' in Proceedings 'Advancing Astrophysics with the SKA (AASKA14)', PoS(AASKA14)09

    Calibrating CHIME, A New Radio Interferometer to Probe Dark Energy

    Full text link
    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use CHIME to map neutral hydrogen in the frequency range 400 -- 800\,MHz over half of the sky, producing a measurement of baryon acoustic oscillations (BAO) at redshifts between 0.8 -- 2.5 to probe dark energy. We have deployed a pathfinder version of CHIME that will yield constraints on the BAO power spectrum and provide a test-bed for our calibration scheme. I will discuss the CHIME calibration requirements and describe instrumentation we are developing to meet these requirements

    Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder

    Full text link
    A pathfinder version of CHIME (the Canadian Hydrogen Intensity Mapping Experiment) is currently being commissioned at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC. The instrument is a hybrid cylindrical interferometer designed to measure the large scale neutral hydrogen power spectrum across the redshift range 0.8 to 2.5. The power spectrum will be used to measure the baryon acoustic oscillation (BAO) scale across this poorly probed redshift range where dark energy becomes a significant contributor to the evolution of the Universe. The instrument revives the cylinder design in radio astronomy with a wide field survey as a primary goal. Modern low-noise amplifiers and digital processing remove the necessity for the analog beamforming that characterized previous designs. The Pathfinder consists of two cylinders 37\,m long by 20\,m wide oriented north-south for a total collecting area of 1,500 square meters. The cylinders are stationary with no moving parts, and form a transit instrument with an instantaneous field of view of ∼\sim100\,degrees by 1-2\,degrees. Each CHIME Pathfinder cylinder has a feedline with 64 dual polarization feeds placed every ∼\sim30\,cm which Nyquist sample the north-south sky over much of the frequency band. The signals from each dual-polarization feed are independently amplified, filtered to 400-800\,MHz, and directly sampled at 800\,MSps using 8 bits. The correlator is an FX design, where the Fourier transform channelization is performed in FPGAs, which are interfaced to a set of GPUs that compute the correlation matrix. The CHIME Pathfinder is a 1/10th scale prototype version of CHIME and is designed to detect the BAO feature and constrain the distance-redshift relation.Comment: 20 pages, 12 figures. submitted to Proc. SPIE, Astronomical Telescopes + Instrumentation (2014
    corecore